Error Management Features

of Oracle PL/SQL

ORACLE"

Steven Feuerstein

Oracle Developer Advocate for PL/SQL
Oracle Corporation

steven.feuerstein@oracle.com
@sfonplsql
stevenfeuersteinonplsql.blogspot.com
Practically Perfect PL/SQL (YouTube)

Resources for Oracle Database Developers
Official home of PL/SQL - oracle.com/plsq|

SQL-PL/SQL discussion forum on OTN
https://community.oracle.com/community/database/developer-tools/sql _and_pl sql

PL/SQL and EBR blog by Bryn Llewellyn - https://blogs.oracle.com/plsql-and-ebr
Oracle Learning Library - oracle.com/oll

Weekly PL/SQL and SQL quizzes, and more - devgym.oracle.com

Ask Tom - asktom.oracle.com — 'nuff said

LiveSQL - livesql.oracle.com — script repository and 12/7 12c database
oracle-developer.net - great content from Adrian Billington

oracle-base.com - great content from Tim Hall

ORACLE

Error Management in PL/SQL

Defining exceptions
Raising exceptions

Handling exceptions

Let’s start with quizzes to test your knowledge of the basic mechanics of
exception handling in PL/SQL.

All referenced code is available at livesgl.oracle.com and
in my demo.zip file from the
PL/SQL Learning Library: oracle.com/oll/plsql.

ORACLE’

Quiz: When strings don't fit...(1)

What do you see after running this block?

DECLARE
aname VARCHAR2(5);
BEGIN
BEGIN
aname := 'Big String';
DBMS_OUTPUT.PUT_LINE (aname) ;
EXCEPTION

WHEN VALUE_ERROR THEN

END;

DBMS_OUTPUT.PUT_LINE ('what error?');
EXCEPTION

WHEN VALUE_ERROR THEN

END;

DBMS_OUTPUT.PUT_LINE ('Inner block');

DBMS_OUTPUT.PUT_LINE ('Oouter block');

excquizl.sql

livesql.oracle.com "Test Your PL/SQL Exception Handling Knowledge"

ORACLE’

Quiz: When strings don't fit...(2)

What do you see after running this block?

ORACLE

DECLARE
aname VARCHAR2(5);
BEGIN
DECLARE
aname VARCHAR2(5) := 'Big String';
BEGIN
DBMS_OUTPUT.PUT_LINE (aname);

EXCEPTION
WHEN VALUE_ERROR
THEN
DBMS_OUTPUT.PUT_LINE ('Inner block');
END;
DBMS_OUTPUT.PUT_LINE ('what error?');
EXCEPTION
WHEN VALUE_ERROR
THEN
DBMS_OUTPUT.PUT_LINE ('Outer block');
END;
/

excquiz2.sql

' 4

5

Defining Exceptions
The EXCEPTION is a limited type of data.

Has just two attributes: code and message.

You can RAISE and handle an exception, but it cannot be passed as an argument in a
program.

Associate names with error numbers with the EXCEPTION_INIT pragma.

ORACLE

The EXCEPTION_INIT Pragma

CREATE OR REPLACE PROCEDURE upd_for_dept (
dept_in IN employee.department_id%TYPE
, hewsal_in IN employee.salary%TYPE

)
IS

e_forall_failure EXCEPTION;
PRAGMA EXCEPTION_INIT (e_forall_failure, -24381);

Use EXCEPTION_INIT to...

Give names to Oracle error codes for which no exception was defined.

Assign an error code other than 1 to a user-defined exception (usually in the -20NNN
range used by RAISE_APPLICATION_ERROR).

exception_init.sql
livesgl.oracle.com search "exception_init"

ORACLE

Raising Exceptions

RAISE raises the specified exception by name.
RAISE; re-raises current exception. Callable only within the exception section.

RAISE_APPLICATION ERROR

Communicates an application specific error back to a non-PL/SQL host environment.
Error numbers restricted to the -20,999 - -20,000 range.

ORACLE

The RAISE Statement

Use RAISE to raise a specific, named exception or to re-raise the current

exception.

Raise pre-defined and user-defined exceptions.

"RAISE;" re-raises the current exception.
You can only use RAISE; from within an exception handler.

ORACLE

e_forall_failure EXCEPTION;

PRAGMA EXCEPTION_INIT (e_forall_failure, -24381);

BEGIN

RAISE e_forall_failure;

EXCEPTION

WHEN e_forall_failiure THEN
lTog_error();
RAISE;

WHEN OTHERS THEN
lTog_error();
RAISE;

raise.sql
reraise.sq|l

9

Communicating Application Errors

When Oracle raises an exception, it provides the error code and error
message.

When an application-specific error occurs, such as "Account balance too

low", it is up to you, the developer, to communicate all necessary
information to the user.

This can involve an error code, error message, or both.

For this, you must use RAISE_APPLICATION_ERROR.
And, really, that is the only time.

ORACLE’

10

Defining application-specific messages
You can raise an application-specific error with RAISE, but you cannot pass
back an application-specific message that way.

With RAISE_APPLICATION ERROR, you can issue your own "ORA-" error
messages.

This built-in replaces the values that would normally be returned with a call to
SQLCODE and SQLERRM with your values.

This information can be displayed to the user or sent to the error log.

ORACLE’

11

RAISE_APPLICATION_ERROR Example

IF :NEW.birthdate > ADD_MONTHS (SYSDATE, -1 * 18 * 12)
THEN
RAISE_APPLICATION_ERROR
(-20070, ‘Employee must be 18.°);
END IF;

This code from a database trigger (indicated by ":NEW") shows a typical
(and typically problematic) usage of RAISE_APPLICATION ERROR.

It's a business rule requiring a "business" message.

Typically problematic:
Hard-coding of error code and message
Duplication of "rule" information: 18 years.

ORACLE

Livesgl.oracle.com search "raise_application_error"

employee_must_be 18.sql J

RAISE_APPLICATION_ERROR Details

RAISE_APPLICATION_ERROR (
num binary_integer
, msg varchar?2
, keeperrorstack boolean default FALSE);

Defined in the DBMS_STANDARD package.
The num argument range: -20,999 and -20,000.

Use something else and lose the error message!

Error messages can be up to 2048 bytes*.

You can pass to a string of up to 32K bytes, but you won't be able to get it "out"; your
users will not be able to see the full string.

Third argument determines if the full stack of errors is returned or just the
most recent.

ORACLE

raise_application.sql
max_rae_string_length.sql

errorstack.sql 13

Handling Exceptions

The EXCEPTION section consolidates all error handling logic in a block.
But only traps errors raised in the executable section of the block.

Several useful functions usually come into play:
SQLCODE and SQLERRM
DBMS_UTILITY.FORMAT CALL_STACK
DBMS_UTILITY.FORMAT ERROR_STACK
DBMS_UTILITY.FORMAT _ERROR_BACKTRACE
Plus, new to 12.1, the UTL_CALL_STACK package

The DBMS_ERRLOG package
Quick and easy logging of DML errors

ORACLE’

14

SQLCODE and SQLERRM

SQLCODE returns the error code of the most recently-raised exception.
You cannot call it inside an SQL statement (even inside a PL/SQL block).

SQLERRM is a generic lookup function: return the message text for an error
code.

And if you don't provide an error code, SQLERRM returns the message for SQLCODE.

But....SQLERRM might truncate the message.

Very strange, but it is possible.
So Oracle recommends that you not use this function.

sglerrm.sql
livesgl.oracle.com search "sqlerrm"

ORACLE"

15

DBMS_UTILITY.FORMAT CALL_STACK

The "call stack" reveals the path taken through your application code to get
to that point.

Very useful whenever tracing or logging errors.

The string is formatted to show line number and program unit name.
But it does not reveal the names of subprograms in packages.

callstack.sql
callstack.pkg
livesql.oracle.com search "call_stack"

ORACLE"

16

DBMS_UTILITY.FORMAT_ERROR_STACK

This built-in returns the error stack in the current session.

Possibly more than one error in stack.
Returns NULL when there is no error.

Returns a string of maximum size 2000 bytes (according to the
documentation).

Oracle recommends you use this instead of SQLERRM, to reduce the
chance of truncation.

errorstack.sql
big_error_stack.sql
livesqgl.oracle.com search "error_stack"

ORACLE"

17

DBMS_UTILITY.FORMAT_ERROR_BACKTRACE

The backtrace function answers the question: "Where was my error raised?
Prior to 10.2, you could not get this information from within PL/SQL.

Call it whenever you are logging an error.

When you re-raise your exception (RAISE;) or raise a different exception,
subsequent BACKTRACE calls will point to that line.

So before a re-raise, call BACKTRACE and store that information to avoid losing the
original line number.

backtrace.sql
bt.pkg
livesql.oracle.com search "backtrace"

ORACLE"

18

Or Use UTL_CALL_STACK (12.1 and higher)

This new package provides a granular API to the call stack and back trace.

It also now provides complete name information, down to the nested
subprogram.

But the bottom line is that generally you will call your functions in the
exception section (thru a generic error logging procedure, | hope!) and
then write that information to your error log.

When you need to diagnose an error, go to the log, grab the string, and
analyze.

12c_utl call_stack*.sql
liveSQL.oracle.com search "utl_call_stack"

19

ORACLE"

Continuing Past Exceptions

What if you want to continue processing in your program even if an error
has occurred?

Three options...

Use a nested block
FORALL with SAVE EXCEPTIONS
DBMS_ERRLOG

continue_past_exception.sql

ORACLE

20

Exception handling and FORALL

When an exception occurs in a DML statement....
That statement is rolled back and the FORALL stops.
All (previous) successful statements are not rolled back.

Use the SAVE EXCEPTIONS clause to tell Oracle to continue past exceptions,
and save the exception information for later.

Then check the contents of the pseudo-collection of records,
SQL%BULK_EXCEPTIONS.
Two fields: ERROR_INDEX and ERROR_CODE

21

ORACLE’

FORALL with SAVE EXCEPTIONS

Suppress errors at the statement level.

CREATE OR REPLACE PROCEDURE Tload_books (books_in IN book_obj_Tlist_t)
IS

bulk_errors EXCEPTION;

PRAGMA EXCEPTION_INIT (bulk_errors, -24381);
BEGIN

FORALL indx IN books_in.FIRST..books_in.LAST
SAVE EXCEPTIONS s

INSERT INTO book values (books_in(indx));

Allows processing of all
statements, even after an error

OCCurs.
EXCEPTION
WHEN bulk_errors THEN
FOR 1 ndX 1 n 1.. SQL%BULK_EXCEPTIONS . COUNT <« lterate through pseudo_
LOOP collection of errors.
log_error (SQL%BULK_EXCEPTIONS (indx) .ERROR_CODE) ;
END LOOP;

END;

ORACLE’

bulkexc.sql
livesql.oracle.com search "save_exceptions" 22

LOG ERRORS and DBMS_ERRLOG

Use this package (added in Oracle Database 10g Release 2) to enable row-
level error logging (and exception suppression) for DML statements.

Compare to FORALL SAVE EXCEPTIONS, which suppresses exceptions at the statement
level.

Creates a log table to which errors are written.
Lets you specify maximum number of "to ignore" errors.

Better performance than trapping, logging and continuing past exceptions.
Exception handling is slow.

dbms_errlog.sql
dbms_errlog_helper.pkg
dbms_errlog_vs_save_exceptions.sql
livesql.oracle.com search "log errors"

ORACLE"

LOG ERRORS and DBMS_ERRLOG

Suppress DML row-level errors!

Impact of errors on DML execution
Introduction to LOG ERRORS feature
Creating an error log table

Adding LOG ERRORS to your DML statement
"Gotchas" in the LOG ERRORS feature

The DBMS_ERRLOG helper package

ORACLE’

24

Impact of errors on DML execution

A single DML statement can result in changes to multiple rows.

When an error occurs on a change to a row....

All previous changes from that statement are rolled back.
No other rows are processed.

An error is passed out to the calling block (turns into a PL/SQL exception).
No rollback on completed DML in that session.

Usually acceptable, but what if you want to:
Avoid losing all prior changes?

Avoid the performance penalty of exception management in PL/SQL?

ORACLE"

errors_and_dml.sql
livesqgl.oracle.com search "Exceptions Do Not Rollback"

25

Row-level Error Suppression in DML with LOG ERRORS

Once the error propagates out to the PL/SQL layer, it is too late; all

C

T
C

B

ORACLE’

nanges to rows have been rolled back.

ne only way to preserve changes to rows is to add the LOG ERRORS
ause in your DML statement.

Errors are suppressed at row level within the SQL Layer.

ut you will first need to created an error log table with DBMS_ERRLOG.

26

Terminology for LOG ERRORS feature
DML table: the table on which DML operations will be performed

Error logging table (aka, error table): the table that will contain history of
errors for DML table

Reject limit: the maximum number of errors that are acceptable for a given
DML statement

"If more than 100 errors occur, something is badly wrong, just stop."

ORACLE’

27

Step 1. Create an error log table

Call DBMS_ERRLOG.CREATE_ERROR_LOG to create the error logging table
for your "DML table."

Default name: ERRS_<your_table name>

You can specify alternative table name, tablespace, owner.
Necessary if DML table name > 25 characters!

The log table contains five standard error log info columns and then a
column for each VARCHAR2-compatible column in the DML table.

dbms_errlog.sql

28

ORACLE’

Step 2: Add LOG ERRORS to your DML

UPDATE employees
SET salary = salary_in
LOG ERRORS REJECT LIMIT UNLIMITED,

UPDATE employees
SET salary = salary_in
LOG ERRORS REJECT LIMIT 100;

Specify the limit of errors after which you want the DML statement to stop
— or UNLIMITED to allow it to run its course.

Then...make sure to check the error log table after you run your DML
statement!

Oracle will not raise an exception when the DML statement ends — big difference
from SAVE EXCEPTIONS.

ORACLE

29

"Gotchas" in the LOG ERRORS feature

The default error logging table is missing some critical information.
When the error occurred, who executed the statement, where it occurred in my code

Error reporting is often obscure: "Table or view does not exist."

It’s up to you to grant the necessary privileges on the error log table.

If the “DML table” is modified from another schema, that schema must be able to write
to the log table as well.

Use the DBMS_ERRLOG helper package to get around many of these issues.

ORACLE’

30

The DBMS_ERRLOG helper package

Creates the error log table.
Adds three columns to keep track of user, timestamp and location in code.
Compiles a trigger to populate the added columns.

Creates a package to make it easier to manage the contents of the error log
table.

dbms_errlog_helper.sql
dbms_errlog_helper_demo.sq|
livesql.oracle.com search "helper package"

31

ORACLE"

LOG ERRORS - Conclusions

When executing multiple DML statements or affecting multiple rows,
decide on your error policy.

Stop at first error or continue?

Then decide on the level of granularity of continuation: statement or row?
LOG ERRORS is the only way to perform row-level error suppression.

Make sure that you check and manage any error logs created by your
code.

ORACLE’

32

Some Recommendations for Error Management

Set standards before you start coding
It's not the kind of thing you can easily add in later

Always call a log procedure in your exception handler.
And everyone should use the same log procedure!

Decide where in the stack you handle exceptions.

Always at top level block to ensure that users don't see ugly error messags.

If you need to log local block state, handle in that block and re-raise.

Just use logger. https://github.com/OraOpenSource/Logger

ORACLE’

33

Always call a log procedure in your exception handler

Always log errors to a table.

Never insert into your log table in the handler.

Everyone uses the same procedure.

Avoid multiple loggings for the same error.

ORACLE

34

Decide where in the stack you handle exceptions.

Some suggest that only the top-level block should trap an exception.
The error utility functions "remember" where it came from.

But you lose information about the application state at the moment the
exception was raised.

What | do:
Always handle at top level block to ensure that users don't see ugly error messags.

If Ineed to log local block state (parameters, variables, etc.), | handle in that block
and re-raise.

35

ORACLE’

Error Management Summary

Exceptions raised in the declaration section always escape unhandled.
Consider assigning default values in the executable section instead.

Call DBMS_UTILITY or UTL_CALL_STACK functions whenever you are
logging errors and tracing execution.

Suppress errors at statement level with FORALL-SAVE EXCEPTIONS

Suppress errors at row level with LOG_ERRORS
But don't use the ERRS table "as is".

Rely on a standard, reusable error logging utility.

ORACLE’

36

ORACLE

