
Copyright	©	2014	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

PL/SQL – The KISS programming language

Error Management Features
of Oracle PL/SQL

1

Copyright	©	2018 Oracle	and/or	its	affiliates.	All	rights	reserved.		| 2

Resources	for	Oracle	Database	Developers
• Official	home	of	PL/SQL	- oracle.com/plsql
• SQL-PL/SQL	discussion	forum	on	OTN
https://community.oracle.com/community/database/developer-tools/sql_and_pl_sql

• PL/SQL	and	EBR	blog	by	Bryn	Llewellyn	- https://blogs.oracle.com/plsql-and-ebr

• Oracle	Learning	Library	- oracle.com/oll
• Weekly	PL/SQL	and	SQL	quizzes,	and	more	- devgym.oracle.com
• Ask	Tom	- asktom.oracle.com – 'nuff said
• LiveSQL	- livesql.oracle.com – script	repository	and	12/7	12c	database
• oracle-developer.net - great	content	from	Adrian	Billington
• oracle-base.com - great	content	from	Tim	Hall

Copyright	©	2018 Oracle	and/or	its	affiliates.	All	rights	reserved.		| 3

Error	Management	in	PL/SQL
• Defining	exceptions
• Raising	exceptions
• Handling	exceptions

• Let’s	start	with	quizzes	to	test	your	knowledge	of	the	basic	mechanics	of	
exception	handling	in	PL/SQL.

All	referenced	code	is	available	at	livesql.oracle.com and	
in	my	demo.zip file	from	the	

PL/SQL	Learning	Library:	oracle.com/oll/plsql.

Copyright	©	2018 Oracle	and/or	its	affiliates.	All	rights	reserved.		| 44

Quiz:	When	strings	don't	fit...(1)

DECLARE
aname VARCHAR2(5);

BEGIN
BEGIN

aname := 'Big String';
DBMS_OUTPUT.PUT_LINE (aname);

EXCEPTION
WHEN VALUE_ERROR THEN

DBMS_OUTPUT.PUT_LINE ('Inner block');
END;
DBMS_OUTPUT.PUT_LINE ('What error?');

EXCEPTION
WHEN VALUE_ERROR THEN

DBMS_OUTPUT.PUT_LINE ('Outer block');
END;

excquiz1.sql
livesql.oracle.com "Test	Your	PL/SQL	Exception	Handling	Knowledge"

• What	do	you	see	after	running	this	block?	

Copyright	©	2018 Oracle	and/or	its	affiliates.	All	rights	reserved.		| 5

Quiz:	When	strings	don't	fit...(2)

DECLARE
aname VARCHAR2(5);

BEGIN
DECLARE

aname VARCHAR2(5) := 'Big String';
BEGIN

DBMS_OUTPUT.PUT_LINE (aname);

EXCEPTION
WHEN VALUE_ERROR
THEN

DBMS_OUTPUT.PUT_LINE ('Inner block');
END;
DBMS_OUTPUT.PUT_LINE ('What error?');

EXCEPTION
WHEN VALUE_ERROR
THEN

DBMS_OUTPUT.PUT_LINE ('Outer block');
END;
/

excquiz2.sql

• What	do	you	see	after	running	this	block?	

Copyright	©	2018 Oracle	and/or	its	affiliates.	All	rights	reserved.		| 6

Defining	Exceptions
• The	EXCEPTION	is	a	limited	type	of	data.

– Has	just	two	attributes:	code	and	message.	
– You	can	RAISE	and	handle	an	exception,	but	it	cannot	be	passed	as	an	argument	in	a	
program.

• Associate	names	with	error	numbers	with	the	EXCEPTION_INIT	pragma.

Copyright	©	2018 Oracle	and/or	its	affiliates.	All	rights	reserved.		| 7

The	EXCEPTION_INIT	Pragma

• Use	EXCEPTION_INIT	to...
– Give	names	to	Oracle	error	codes	for	which	no	exception	was	defined.
– Assign	an	error	code	other	than	1	to	a	user-defined	exception	(usually	in	the	-20NNN	
range	used	by	RAISE_APPLICATION_ERROR).

CREATE OR REPLACE PROCEDURE upd_for_dept (
dept_in IN employee.department_id%TYPE

, newsal_in IN employee.salary%TYPE
)
IS

e_forall_failure EXCEPTION;
PRAGMA EXCEPTION_INIT (e_forall_failure, -24381);

exception_init.sql
livesql.oracle.com search	"exception_init"

Copyright	©	2018 Oracle	and/or	its	affiliates.	All	rights	reserved.		| 88

Raising	Exceptions
• RAISE	raises	the	specified	exception	by	name.	

– RAISE;	re-raises	current	exception.	Callable	only	within	the	exception	section.

• RAISE_APPLICATION_ERROR
– Communicates	an	application	specific	error	back	to	a	non-PL/SQL	host	environment.
– Error	numbers	restricted	to	the	-20,999	- -20,000	range.

Copyright	©	2018 Oracle	and/or	its	affiliates.	All	rights	reserved.		| 9

The	RAISE	Statement
• Use	RAISE	to	raise	a	specific,	named	exception	or	to	re-raise the	current	
exception.
– Raise	pre-defined	and	user-defined	exceptions.

• "RAISE;"	re-raises	the	current	exception.
– You	can	only	use	RAISE;	from	within	an	exception	handler.

e_forall_failure EXCEPTION;
PRAGMA EXCEPTION_INIT (e_forall_failure, -24381);

BEGIN
...
RAISE e_forall_failure;

EXCEPTION
WHEN e_forall_failiure THEN

log_error();
RAISE;

WHEN OTHERS THEN
log_error();
RAISE;

raise.sql
reraise.sql

Copyright	©	2018 Oracle	and/or	its	affiliates.	All	rights	reserved.		| 10

Communicating	Application	Errors
• When	Oracle	raises	an	exception,	it	provides	the	error	code	and	error	
message.

• When	an	application-specific	error	occurs,	such	as	"Account	balance	too	
low",	it	is	up	to	you,	the	developer,	to	communicate	all	necessary	
information	to	the	user.
– This	can	involve	an	error	code,	error	message,	or	both.

• For	this,	you	must	use	RAISE_APPLICATION_ERROR.
– And,	really,	that	is	the	only	time.

Copyright	©	2018 Oracle	and/or	its	affiliates.	All	rights	reserved.		| 1111

Defining	application-specific	messages
• You	can	raise	an	application-specific	error	with	RAISE,	but	you	cannot	pass	
back	an	application-specific	message that	way.

• With	RAISE_APPLICATION_ERROR,	you	can	issue	your	own	"ORA-"	error	
messages.
– This	built-in	replaces	the	values	that	would	normally	be	returned	with	a	call	to	
SQLCODE	and	SQLERRM	with	your values.

• This	information	can	be	displayed	to	the	user	or	sent	to	the	error	log.

Copyright	©	2018 Oracle	and/or	its	affiliates.	All	rights	reserved.		| 1212

RAISE_APPLICATION_ERROR	Example
IF :NEW.birthdate > ADD_MONTHS (SYSDATE, -1 * 18 * 12)
THEN

RAISE_APPLICATION_ERROR
(-20070, ‘Employee must be 18.’);

END IF;

• This	code	from	a	database	trigger	(indicated	by	":NEW")	shows	a	typical	
(and	typically	problematic)	usage	of	RAISE_APPLICATION_ERROR.
– It's	a	business	rule	requiring	a	"business"	message.

• Typically	problematic:
– Hard-coding	of	error	code	and	message
– Duplication	of	"rule"	information:	18	years.

employee_must_be_18.sql
Livesql.oracle.com search	"raise_application_error"

Copyright	©	2018 Oracle	and/or	its	affiliates.	All	rights	reserved.		| 13

RAISE_APPLICATION_ERROR	Details

• Defined	in	the	DBMS_STANDARD	package.
• The	num argument	range:	-20,999	and	-20,000.

– Use	something	else	and	lose the	error	message!

• Error	messages	can	be	up	to	2048	bytes*.
– You	can	pass	to	a	string	of	up	to	32K	bytes,	but	you	won't	be	able	to	get	it	"out";	your	
users	will	not	be	able	to	see	the	full	string.

• Third	argument	determines	if	the	full	stack of	errors	is	returned	or	just	the	
most	recent.

RAISE_APPLICATION_ERROR (
num binary_integer

, msg varchar2
, keeperrorstack boolean default FALSE);

raise_application.sql
max_rae_string_length.sql

errorstack.sql

Copyright	©	2018 Oracle	and/or	its	affiliates.	All	rights	reserved.		| 14

Handling	Exceptions
• The	EXCEPTION	section	consolidates	all	error	handling	logic	in	a	block.

– But	only	traps	errors	raised	in	the	executable	section	of	the	block.

• Several	useful	functions	usually	come	into	play:
– SQLCODE	and	SQLERRM
– DBMS_UTILITY.FORMAT_CALL_STACK
– DBMS_UTILITY.FORMAT_ERROR_STACK
– DBMS_UTILITY.FORMAT_ERROR_BACKTRACE
– Plus,	new	to	12.1,	the	UTL_CALL_STACK	package

• The	DBMS_ERRLOG	package
–Quick	and	easy	logging	of	DML	errors

Copyright	©	2018 Oracle	and/or	its	affiliates.	All	rights	reserved.		| 15

SQLCODE	and	SQLERRM
• SQLCODE	returns	the	error	code	of	the	most	recently-raised	exception.

– You	cannot	call	it	inside	an	SQL	statement	(even	inside	a	PL/SQL	block).

• SQLERRM	is	a	generic	lookup	function:	return	the	message	text	for	an	error	
code.
– And	if	you	don't	provide	an	error	code,	SQLERRM	returns	the	message	for	SQLCODE.

• But....SQLERRM	might	truncate	the	message.
– Very	strange,	but	it	is	possible.
– So	Oracle	recommends	that	you	not	 use	this	function.

sqlerrm.sql
livesql.oracle.com search	"sqlerrm"

Copyright	©	2018 Oracle	and/or	its	affiliates.	All	rights	reserved.		| 16

DBMS_UTILITY.FORMAT_CALL_STACK
• The	"call	stack"	reveals	the	path taken	through	your	application	code	to	get	
to	that	point.

• Very	useful	whenever	tracing	or	logging	errors.
• The	string	is	formatted	to	show	line	number	and	program	unit	name.

– But	it	does	not	reveal	the	names	of	subprograms in	packages.

callstack.sql	
callstack.pkg

livesql.oracle.com search	"call_stack"

Copyright	©	2018 Oracle	and/or	its	affiliates.	All	rights	reserved.		| 17

DBMS_UTILITY.FORMAT_ERROR_STACK
• This	built-in	returns	the	error	stack in	the	current	session.

– Possibly	more	than	one	error	in	stack.

• Returns	NULL	when	there	is	no	error.
• Returns	a	string	of	maximum	size	2000	bytes	(according	to	the	
documentation).

• Oracle	recommends	you	use	this	instead	of	SQLERRM,	to	reduce	the	
chance	of	truncation.

errorstack.sql
big_error_stack.sql

livesql.oracle.com search	"error_stack"

Copyright	©	2018 Oracle	and/or	its	affiliates.	All	rights	reserved.		| 18

DBMS_UTILITY.FORMAT_ERROR_BACKTRACE
• The	backtrace function	answers	the	question:	"Where	was	my	error	raised?

– Prior	to	10.2,	you	could	not	get	this	information	from	within	PL/SQL.

• Call	it	whenever	you	are	logging	an	error.
• When	you	re-raise	your	exception	(RAISE;)	or	raise	a	different	exception,	
subsequent	BACKTRACE	calls	will	point	to	that line.
– So	before	a	re-raise,	call	BACKTRACE	and	store	that	information	to	avoid	losing	the	
original	line	number.

backtrace.sql
bt.pkg

livesql.oracle.com search	"backtrace"

18

Copyright	©	2018 Oracle	and/or	its	affiliates.	All	rights	reserved.		| 19

Or	Use	UTL_CALL_STACK	(12.1	and	higher)
• This	new	package	provides	a	granular	API	to	the	call	stack	and	back	trace.
• It	also	now	provides	complete	name	information,	down	to	the	nested	
subprogram.

• But	the	bottom	line	is	that	generally	you	will	call	your	functions	in	the	
exception	section	(thru	a	generic	error	logging	procedure,	I	hope!)	and	
then	write	that	information	to	your	error	log.

• When	you	need	to	diagnose	an	error,	go	to	the	log,	grab	the	string,	and	
analyze.

12c_utl_call_stack*.sql
liveSQL.oracle.com search	"utl_call_stack"

Copyright	©	2018 Oracle	and/or	its	affiliates.	All	rights	reserved.		| 20

Continuing	Past	Exceptions
• What	if	you	want	to	continue	processing	in	your	program	even	if	an	error	
has	occurred?

• Three	options...
– Use	a	nested	block	
– FORALL	with	SAVE	EXCEPTIONS
– DBMS_ERRLOG

continue_past_exception.sql

Copyright	©	2018 Oracle	and/or	its	affiliates.	All	rights	reserved.		| 21

Exception	handling	and	FORALL
• When	an	exception	occurs	in	a	DML	statement....

– That	statement	is	rolled	back	and	the	FORALL	stops.
– All	(previous)	successful	statements	are	not rolled	back.

• Use	the	SAVE	EXCEPTIONS	clause	to	tell	Oracle	to	continue	past exceptions,	
and	save	the	exception	information	for	later.

• Then	check	the	contents	of	the	pseudo-collection	of	records,	
SQL%BULK_EXCEPTIONS.
– Two	fields:	ERROR_INDEX	and	ERROR_CODE

Copyright	©	2018 Oracle	and/or	its	affiliates.	All	rights	reserved.		| 22

FORALL	with	SAVE	EXCEPTIONS

• Suppress errors at the statement level.
CREATE OR REPLACE PROCEDURE load_books (books_in IN book_obj_list_t)
IS
bulk_errors EXCEPTION;
PRAGMA EXCEPTION_INIT (bulk_errors, -24381);

BEGIN
FORALL indx IN books_in.FIRST..books_in.LAST
SAVE EXCEPTIONS

INSERT INTO book values (books_in(indx));
EXCEPTION

WHEN bulk_errors THEN
FOR indx in 1..SQL%BULK_EXCEPTIONS.COUNT
LOOP

log_error (SQL%BULK_EXCEPTIONS(indx).ERROR_CODE);
END LOOP;

END;

Allows processing of all
statements, even after an error

occurs.

Iterate through pseudo-
collection of errors.

bulkexc.sql
livesql.oracle.com search "save_exceptions"

Copyright	©	2018 Oracle	and/or	its	affiliates.	All	rights	reserved.		| 23

LOG	ERRORS	and	DBMS_ERRLOG	
• Use	this	package	(added	in	Oracle	Database	10g	Release	2)	to	enable	row-
level	error	logging	(and	exception	suppression)	for	DML	statements.
– Compare	to	FORALL	SAVE	EXCEPTIONS,	which	suppresses	exceptions	at	the	statement
level.	

• Creates	a	log	table	to	which	errors	are	written.
– Lets	you	specify	maximum	number	of	"to	ignore"	errors.

• Better	performance	than	trapping,	logging	and	continuing	past	exceptions.
– Exception	handling	is	slow.

dbms_errlog.sql
dbms_errlog_helper.pkg

dbms_errlog_vs_save_exceptions.sql
livesql.oracle.com	search	"log	errors"

Copyright	©	2018 Oracle	and/or	its	affiliates.	All	rights	reserved.		| 24

LOG	ERRORS	and	DBMS_ERRLOG
• Suppress	DML	row-level	errors!
• Impact	of	errors	on	DML	execution
• Introduction	to	LOG	ERRORS	feature
• Creating	an	error	log	table
• Adding	LOG	ERRORS	to	your	DML	statement
• "Gotchas"	in	the	LOG	ERRORS	feature
• The	DBMS_ERRLOG	helper	package

Copyright	©	2018 Oracle	and/or	its	affiliates.	All	rights	reserved.		| 25

Impact	of	errors	on	DML	execution
• A	single	DML	statement can	result	in	changes	to	multiple	rows.
• When	an	error	occurs	on	a	change	to	a	row....

– All	previous	changes	from	that	statement	are	rolled	back.
– No	other	rows	are	processed.
– An	error	is	passed	out	to	the	calling	block	(turns	into	a	PL/SQL	exception).
– No	rollback	on	completed	DML	in	that	session.

• Usually acceptable,	but	what	if	you	want	to:
– Avoid	losing	all	prior	changes?
– Avoid	the	performance	penalty	of	exception	management	in	PL/SQL?

errors_and_dml.sql
livesql.oracle.com	search	"Exceptions	Do	Not	Rollback"

Copyright	©	2018 Oracle	and/or	its	affiliates.	All	rights	reserved.		| 26

Row-level	Error	Suppression	in	DML	with	LOG	ERRORS
• Once	the	error	propagates	out	to	the	PL/SQL	layer,	it	is	too	late;	all	
changes	to	rows	have	been	rolled	back.

• The	only	way	to	preserve	changes	to	rows	is	to	add	the	LOG	ERRORS	
clause	in	your	DML	statement.
– Errors	are	suppressed	at	row	level	within	the	SQL	Layer.

• But	you	will	first	need	to	created	an	error	log	table	with	DBMS_ERRLOG.

Copyright	©	2018 Oracle	and/or	its	affiliates.	All	rights	reserved.		| 27

Terminology	for	LOG	ERRORS	feature
• DML	table:	the	table	on	which	DML	operations	will	be	performed
• Error	logging	table	(aka,	error	table):	the	table	that	will	contain	history	of	
errors	for	DML	table

• Reject	limit:	the	maximum	number	of	errors	that	are	acceptable	for	a	given	
DML	statement
– "If	more	than	100	errors	occur,	something	is	badly	wrong,	just	stop."

Copyright	©	2018 Oracle	and/or	its	affiliates.	All	rights	reserved.		| 28

Step	1.	Create	an	error	log	table
• Call	DBMS_ERRLOG.CREATE_ERROR_LOG	to	create	the	error	logging	table	
for	your	"DML	table."
– Default	name:	ERR$_<your_table_name>

• You	can	specify	alternative	table	name,	tablespace,	owner.
– Necessary	if	DML	table	name	>	25	characters!

• The	log	table	contains	five	standard	error	log	info	columns	and	then	a	
column	for	each	VARCHAR2-compatible	column	in	the	DML	table.

dbms_errlog.sql

Copyright	©	2018 Oracle	and/or	its	affiliates.	All	rights	reserved.		| 29

Step	2:	Add	LOG	ERRORS	to	your	DML

• Specify	the	limit	of	errors	after	which	you	want	the	DML	statement	to	stop	
– or	UNLIMITED	to	allow	it	to	run	its	course.

• Then...make	sure	to	check	the	error	log	table	after	you	run	your	DML	
statement!	
–Oracle	will	not raise	an	exception	when	the	DML	statement	ends	– big	difference	
from	SAVE	EXCEPTIONS.

UPDATE employees
SET salary = salary_in

LOG ERRORS REJECT LIMIT UNLIMITED;

UPDATE employees
SET salary = salary_in

LOG ERRORS REJECT LIMIT 100;

Copyright	©	2018 Oracle	and/or	its	affiliates.	All	rights	reserved.		| 30

"Gotchas"	in	the	LOG	ERRORS	feature
• The	default	error	logging	table	is	missing	some	critical	information.

–When	the	error	occurred,	who	executed	the	statement,	where	it	occurred	in	my	code

• Error	reporting	is	often	obscure:	"Table	or	view	does	not	exist."
• It’s	up	to	you	to	grant	the	necessary	privileges	on	the	error	log	table.

– If	the	“DML	table”	is	modified	from	another	schema,	that	schema	must	be	able	to	write	
to	the	log	table	as	well.

• Use	the	DBMS_ERRLOG	helper	package	to	get	around	many	of	these	issues.

Copyright	©	2018 Oracle	and/or	its	affiliates.	All	rights	reserved.		| 31

The	DBMS_ERRLOG	helper	package
• Creates	the	error	log	table.
• Adds	three	columns	to	keep	track	of	user,	timestamp	and	location	in	code.
• Compiles	a	trigger	to	populate	the	added	columns.
• Creates	a	package	to	make	it	easier	to	manage	the	contents	of	the	error	log	
table.

dbms_errlog_helper.sql
dbms_errlog_helper_demo.sql

livesql.oracle.com	search	"helper	package"

Copyright	©	2018 Oracle	and/or	its	affiliates.	All	rights	reserved.		| 32

LOG	ERRORS	- Conclusions	

• When	executing	multiple	DML	statements	or	affecting	multiple	rows,	
decide	on	your	error	policy.
– Stop	at	first	error	or	continue?

• Then	decide	on	the	level	of	granularity	of	continuation:	statement	or	row?
– LOG	ERRORS	is	the	only	way	to	perform	row-level	error	suppression.

• Make	sure	that	you	check	and	manage	any	error	logs	created	by	your	
code.

Copyright	©	2018 Oracle	and/or	its	affiliates.	All	rights	reserved.		| 33

Some	Recommendations	for	Error	Management

• Set	standards	before	you	start	coding
– It's	not	the	kind	of	thing	you	can	easily	add	in	later

• Always	call	a	log	procedure	in	your	exception	handler.
– And	everyone	should	use	the	same log	procedure!

• Decide	where	in	the	stack	you	handle	exceptions.
– Always	at	top	level	block	to	ensure	that	users	don't	see	ugly	error	messags.
– If	you	need	to	log	local	block	state,	handle	in	that	block	and	re-raise.

• Just	use	logger.	https://github.com/OraOpenSource/Logger

Copyright	©	2018 Oracle	and/or	its	affiliates.	All	rights	reserved.		| 34

Always	call	a	log	procedure	in	your	exception	handler

• Always	log	errors	to	a	table.
• Never	insert	into	your	log	table	in	the	handler.
• Everyone	uses	the	same	procedure.
• Avoid	multiple	loggings	for	the	same	error.

Copyright	©	2018 Oracle	and/or	its	affiliates.	All	rights	reserved.		| 35

Decide	where	in	the	stack	you	handle	exceptions.

• Some	suggest	that	only	the	top-level	block	should	trap	an	exception.
– The	error	utility	functions	"remember"	where	it	came	from.

• But	you	lose	information	about	the	application	state	at	the	moment	the	
exception	was	raised.

• What	I	do:
– Always	handle	at	top	level	block	to	ensure	that	users	don't	see	ugly	error	messags.
– If	Ineed to	log	local	block	state	(parameters,	variables,	etc.),	I	handle	in	that	block	
and	re-raise.

Copyright	©	2018 Oracle	and/or	its	affiliates.	All	rights	reserved.		| 36

Error	Management	Summary	
• Exceptions	raised	in	the	declaration	section	always	escape	unhandled.

– Consider	assigning	default	values	in	the	executable	section	instead.

• Call	DBMS_UTILITY	or	UTL_CALL_STACK	functions	whenever	you	are	
logging	errors	and	tracing	execution.

• Suppress	errors	at	statement	level	with	FORALL-SAVE	EXCEPTIONS
• Suppress	errors	at	row	level	with	LOG_ERRORS

– But	don't	use	the	ERR$	table	"as	is".

• Rely	on	a	standard,	reusable	error	logging	utility.

